
        Introduction 

 Although social insects are famous for their cooperative behav-
iour, their colonies are also the scene of important conflicts over 
reproduction ( Ratnieks  et al. , 2006 ). For example, caste fate 
conflict opposes adults and immature females over the propor-
tion of larvae that will eventually become gynes (virgin queens 
with a reproductive potential) or sterile workers. This conflict 
can be seen as a particular case of parent-offspring conflict that 

potentially evolved in all animal species with parental care 
( Trivers, 1974; Clutton-Brock & Parker, 1995 ). Although caste 
fate conflict might be ubiquitous to all eusocial hymenopterans, 
it is easily observed in species dispersing by colony fission 
( Ratnieks, 2001; Wenseleers  et al. , 2003 ). In these species, colo-
nies are initiated by a young queen accompanied by a group of 
workers. Queens are thus protected throughout their life, which 
enormously decreases their mortality compared with species in 
which queens start colonies alone (independent foundation). 
However, the workers that leave the mother nest represent an 
important investment, which limits fission events ( Pamilo, 1991; 
Peeters & Ito, 2001 ). Thus, from the adult workers and the 
queen’s viewpoint, overproducing gynes represents a waste of 
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  Abstract .      1.   In eusocial insects, colony fission is a mode of dispersal by which a 
young queen leaves her nest with some workers to found a new colony. In these species, 
adult females (workers and the queen) should allocate most resources to increasing their 
colony size, which constrains the possibility of fission. In contrast, developing diploid 
larvae should have a preference for becoming a queen and having their own offspring, 
rather than becoming workers and rearing the offspring of other females. 

 2.   In the ant  Aphaenogaster senilis , queens are produced in very small numbers, 
suggesting that adult females control larval development. We used a 6-year series of 
data on more than 300 nests to determine the annual cycle of worker and queen 
production. Although both overlapped, the latter mostly occurred in the second half of 
the summer, after a major peak of worker emergence. Young queens were also often 
produced in nests whose reproductive queen had died, thus allowing her replacement. 
Overall, we estimate that only 0.07% of diploid larvae actually develop into gynes. 

 3.   Laboratory experiments indicated that brood is bipotent until the second larval 
instar. Diploid larval development into queen was favoured by the removal of the mother 
queen, but was not affected by rearing temperature. 

 4.   Our data suggest that most diploid broods are forced by the adults to develop into 
workers rather than into gynes. However, when the queen is not present due to death or 
after a fission event, a few larvae are allowed to develop into gynes. One way for workers 
to limit the development of larvae might be by controlling the amount of food they 
receive.  

  Key words .      Brood rearing  ,   brood totipotency  ,   Caste determination  ,   colony life cycle  , 
  queen pheromone  ,   temperature  ,   worker control  .  

Ecological Entomology (2009), 34, 595–602 DOI: 10.1111/j.1365-2311.2009.01108.x

2009 The Authors
Journal compilation 2009 The Royal Entomological Society 595

©
©



energy, and effort should rather be devoted chiefly to increasing 
colony size. In contrast, any developing female may expect a 
higher fitness by becoming a queen and having her own off-
spring, with which she will be more closely related than with 
those of other females ( Nonacs & Tobin, 1992; Bourke & Franks, 
1995; Bourke & Ratnieks, 1999; Ratnieks, 2001; Wenseleers 
 et al. , 2003 ). 

 Theoretical models suggest that if diploid larvae controlled 
their own development, 14 – 20% would develop into gynes. 
However, with the exception of a few stingless bees ( Kerr, 1950, 
1969; Engels & Imperatriz-Fonseca, 1990; Wenseleers  et al. , 
2003 ), gyne production in most fission-performing species is 
extremely limited [e.g. 0.01% of the diploid brood in the honey-
bee  Apis mellifera  ( Seeley, 1985; Winston, 1987 ), 0.001% in the 
army ant  Eciton burchelli  ( Schneirla, 1971; Franks & Hölldobler, 
1987 )]. One explanation is that the adults-larvae conflict cannot 
be expressed, because larvae lack control over their own devel-
opment. Determination of the proximate (physiological and 
ecological) mechanisms affecting caste determination and its 
social regulation, therefore seems necessary in understanding 
conflict resolution. 

 Until recently, the development of diploid brood into worker 
or gyne was thought to depend mainly on environmental condi-
tions ( Wheeler, 1986, 1994 ). For example, honey bee larvae de-
veloping into gynes receive a special food, royal jelly, which 
may trigger caste differentiation ( Moritz, 1994 ). In ants, caste 
development has long been shown to differ according to larval 
food ( Bonavita-Cougourdan & Passera, 1978 ) and rearing tem-
perature ( Brian, 1973; Ledoux, 1977; Cassill & Tschinkel, 
2000 ). Therefore, by providing food and moving the larvae up 
and down temperature gradients within the nest, workers might 
directly control gyne production. 

 The queen may also have power over gyne production. In nu-
merous species, her removal triggers gyne development and it 
has been hypothesised that she releases pheromones that indi-
rectly affect diploid brood development by changing worker 
rearing behaviour ( Passera, 1980; Vargo & Fletcher, 1986; 
Winston  et al. , 1990; Pereboom, 2000; Boulay  et al. , 2007 ). 
Direct coercion through the emission of primer pheromones is 
another way in which queens might force caste development. 
However, this mechanism still lacks evidence and is evolution-
arily questionable ( Keller & Nonacs, 1993 ). Finally, maternal 
effects ( Gösswald & Bier, 1954; Passera & Suzzoni, 1978; 
de Menten  et al. , 2005; Schwander  et al. , 2008 ) and genetic caste 
determination have recently been identified ( Tsuji & Yamauchi, 
1995; Pearcy  et al. , 2004; Fournier  et al. , 2005 ), suggesting that, 
in some species, diploid brood development might be fixed even 
before egg hatching ( Helms, 1999; Duchateau  et al. , 2004; 
Iwanishi  et al. , 2007 ). 

  Aphaenogaster senilis  is an ant species that disperses by 
colony fission. In a former paper,  Boulay  et al.  (2007)  have 
shown that gynes of this species are most often discovered 
either in naturally queenless nests or in large queenright nests 
(i.e. containing a fertile queen). These authors also found that 
the separation of a group of workers and brood from the mother 
colony through a double mesh did not prevent the production of 
new gynes. In contrast, when the separation was made of a sin-
gle mesh, the production of new gynes was reduced. It was 

therefore hypothesised that the queen  A. senilis  releases chemi-
cals that diffuse into the colony and inhibit the differentiation of 
diploid brood into gynes. In nature, gynes would be produced 
when the concentration of the queen pheromone in the colony 
drops below a certain threshold, either because the mother 
queen dies, which allows her replacement, or because the col-
ony is large enough to permit fission ( Boulay  et al. , 2007 ). This 
scenario assumes that larvae are bipotent (i.e. they can poten-
tially develop into either castes) until a certain instar, but this 
may not necessarily be the case. Although it is unlikely, gyne 
production in the absence of the queen may not derive from the 
reorientation of bipotent larvae, but from worker thelytoky (i.e. 
the production of diploid offspring by parthenogenesis), as in a 
few other ant species ( Lenoir & Cagniant, 1986; Tsuji, 1988; 
Tsuji & Yamauchi, 1995 ). 

 In the present study, we tested the hypothesis that  A. senilis  
gyne derive from bipotent larvae. To this aim, we first had to 
determine the number of larval instars. Second, we analysed 
colony demography in nature in order to determine whether the 
production of gynes and workers followed an annual cycle and 
if both castes could potentially derive from the same brood. We 
also estimated the proportion of diploid larvae that develop into 
gynes. Finally, we conducted a series of lab experiments to test 
gyne production after orphaning with different brood stages and 
as a function of rearing temperature.  

  Materials and methods 

  Model system 

  Aphaenogaster senilis  is a strictly monogynous ant species 
distributed around the Western Mediterranean basin ( Cagniant & 
Ledoux, 1974 ). Monomorphic workers are 6 – 10   mm in body 
length (unpubl. data). They are particularly abundant in the south 
of the Iberian Peninsula, in sandy biotopes such as the Doñana 
National Park where our colonies were collected. Climate in 
this region is typically Mediterranean with cool winters and hot, 
dry summers.  

  Larval development 

 In order to determine the number of larval instars of  A. senilis , 
five colonies were excavated in May – June 2002. They were kept 
for a few months in the lab at 28   °C    ±    1   °C with  ad libitum  ac-
cess to water and food (maggots and 20% v/v honey solution). 
All the brood was then collected and the maximum width of all 
larvae was measured using a stereomicroscope. After determin-
ing the distribution of larval size, larval instars were confirmed 
by examining the morphology and size of mandibles and hairs of 
20 larvae of each mode under the microscope ( Passera, 1974 ).  

  Annual cycle of brood and gyne production 

 A total of 308 colonies were excavated between December 
2002 and September 2008. Brood and workers were then sorted 
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out to determine the presence of a dealated queen, the number 
of gynes (pupae and adults), the fresh biomass of workers, of 
eggs    +    LI larvae, LII    +    LIII larvae, worker pre-pupae, and 
worker pupae. We also counted the number of worker pupae.  

  Effect of larval stage and temperature on gyne production 

 Twenty medium-sized freshly collected colonies were divided 
to form a total of 100 orphan groups of 200 workers, kept in 
artificial nests composed of a 2    ×    20-cm (diameter    ×    length) 
glass tube half-filled with water and connected to a 9    ×    7-cm 
(diameter    ×    height) foraging area, the internal wall of which 
was painted with Fluon to prevent ants escaping. Each worker 
group was provided with 20   eggs, 20 LI larvae, 20 LII larvae, 20 
LIII larvae, or no brood at all. All groups were kept at 
28   °C    ±    1   °C in complete darkness and fed every second day 
with three  Tenebrio molitor  worms cut into small pieces. The 
presence of gyne and worker pupae was checked every second 
day for 42   days. 

 In a second experiment, 26 freshly collected colonies were 
divided in 60   orphan groups of 200   workers with 20   eggs, 20 LI 
larvae, 20 LII larvae, or 20 LIII larvae. Twenty groups were kept 
at 24   °C    ±    1   °C, 20 groups at 27   °C    ±    1   °C, and 20 groups at 
30   °C    ±    1   °C in complete darkness, and fed every second day 
with mealworms. The presence of gyne and worker pupae was 
checked every second day for 42   days.  

  Statistics 

 All statistics were conducted using the free environment soft-
ware R ( R Core Team, 2008 ). Seasonal variations in a response 
variable (Y) can be modelled linearly as Y   =     �      +      �  .sin(2.  �  .
time)    +      �  .cos(2.  �  .time)    +      �   where   � ,  � ,  �  , and   �   are model pa-
rameters and  time  is an annual index, so that 365.25   days is given 
a unit value ( Crawley, 2002 ). Therefore, annual cycle in brood 
and worker biomass was tested by fitting a linear regression 
model to the data with sin(2. � .time) and cos(2. � .time) as inde-
pendent variables. Brood and worker biomass were square root 
transformed to approach normality. The probability of discover-
ing a gyne in a nest in nature was modelled using a binomial 
regression and the logit link function. Explanatory variables in-
cluded in the initial model were sin(2. � .time) and cos(2. � .time), 
plus the presence of a queen in the colony, the biomass of work-
ers, the biomass of brood, and their interactions. Non-significant 
interactions and variables were then progressively removed until 
the most parsimonious model was obtained based on an analysis 

of deviance ( Crawley, 2002 ). A similar backward procedure was 
used to model the delay (number of days) until the production of 
the first pupa of worker and gyne in the laboratory as a function 
of brood stage and temperature. In this analysis, data collected 
on groups coming from the same source colonies did not consti-
tute independent observations. Therefore, the source colony was 
included as a random factor in generalised linear models that 
were fitted using the lme4 package for R ( Bates  et al. , 2008 ). 
Although this function does not provide  P -values for a single 
random factor, it takes it into account to estimate the effect of the 
fixed factors on the response. In this case, most adequate model 
selection is based on a  �  2  statistics. The response variable was 
the number of days until pupa production, divided by 42, the 
maximum duration of the experiment. This ratio was modelled 
using a binomial distribution and Logit link function. Explanatory 
variables were the caste of the pupa (worker vs. gyne) and either 
the brood stage that was initially offered or the rearing temperature 
(24   °C, 27   °C, or 30   °C).   

  Results 

  Larval development 

 Measurement of the maximum width of 1058 larvae and ex-
amination of mandibular morphology and hair structure revealed 
that the development of  A. senilis  workers is formed by six suc-
cessive pre-imago stages that include eggs, three larval instars, 
a pre-pupa, and a pupa stage (Electronic appendices 1 – 3).  

  Annual cycle of brood and gyne production 

 The total biomass of brood and adult workers varied signifi-
cantly throughout the year (     Table   1 and Fig.   1a ). In winter 
(December to February), brood was chiefly composed of eggs 
and LI that were clumped together in deep nest chambers 
( Fig.   1b ). In spring, brood biomass increased enormously with 
the successive appearance of LII, LIII, pre-pupae, and pupae, 
whereas workers from the previous cohort progressively died 
leading to a slight decrease in total worker biomass. This trend 
was reversed in May with the emergence of the first workers and 
consecutive decrease in brood biomass. Worker biomass was 
the highest in mid-summer, but decreased notably from the sec-
ond half of August onwards. Colony composition then remained 
quite stable until the following spring. 

 Of the 308 nests that were excavated between December 
2002 and September 2008, only 18 contained gynes (either at 

     Table   1.     Results of the linear regression testing for worker and brood biomass time dependence.     

  

Worker biomass Brood biomass  

Estimate SE  t  P Estimate SE  t  P     

Intercept 2.51 0.04 64.70 <0.001 1.14 0.04 31.43 <0.001  
sin(2. � .time)  – 0.12 0.05  – 2.16 0.032 0.46 0.05 9.00 <0.001  
cos(2. � .time)  – 0.03 0.05  – 0.64 0.520  – 0.41 0.05  – 7.94 <0.001  
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the pupa or adult stage). Gynes were in any case produced in 
very small numbers, not exceeding six   individuals per colony. 
In total, 28 gynes were encountered (14 of which were still pu-
pae; mean    ±    SE: 0.04    ±    0.01 gyne pupa per nest). These nests 
contained, on average, 57.88    ±    6.95 worker pupae. This gives a 

rough estimate of 0.07% [0.04/(57.88    +    0.04)] diploid larvae 
developing into gyne. 

    Table   2  summarises the result of model selection for the prob-
ability of the presence of at least one gyne in nature. Gyne pro-
duction followed a marked annual pace [ t    =    – 2.89,  P    =   0.004 
and  t    =    – 2.73,  P    =   0.006 for sin(2. � .time) and cos(2. � .time), 
respectively] and in mid-summer one gyne was found in up to 
30% of the nests ( Fig.   1c ). Gyne production was more frequent 
in queenless than in queenright nests (38% vs 5%, respectively; 
 t    =   4.36,  P    <   0.001) and increased with worker biomass 
( t    =   3.17,  P    <   0.001). However, it was not significantly related 
to brood biomass ( Table   2 ).  

  Effect of brood stage and temperature on larval development 

 Laboratory experiments revealed that the time until the pro-
duction of the first pupa in orphan groups depended on the brood 
instar that was initially provided (     Table   3, Fig.   2 ). The most ad-
equate model fitted to the data included the interaction between 
brood stage and the caste of the pupa produced. In effect, if no 
brood was initially provided, no gyne or worker pupa was pro-
duced. If only LIII larvae were provided, worker pupae were 
produced in all the nests in approximately 13   days, but no gyne 
pupa appeared by 42   days. Gyne pupae were only produced if 
eggs, LI or LII were provided. In no case were more than three 
gynes produced per group. Workers in all orphaned groups ap-
parently laid eggs. In the brood-deprived groups, eggs started 
hatching after 35   days and by day 42, most orphan groups had a 
few small larvae. We could not follow their subsequent develop-
ment. It is therefore difficult to tell whether egg incubation is 
particularly long in this species (35   days) or whether the first 
worker-laid eggs were policed by other workers. 

 Temperature also affected pupae production (     Table   4, Fig.   3 ). 
At 30   °C, pupae production was much faster than at 24   °C and, 
on average, gynes took longer to be produced than workers. 
Nevertheless, there was no significant interaction between tem-
perature and caste, indicating that in this temperature window, 
the delay between gyne and worker production was independent 
of rearing temperature.   

  Discussion 

 Morphological data suggest  A. senilis  has three larval instars, 
which is also the case in other Myrmicine ants ( Weir, 1959; 

      

     Fig.   1.     Annual cycle of  Aphaenogaster senilis  nest demography in the 
fi eld: (a) variation of total brood and worker biomass (values are 
means    ±    SE); (b) variation of brood composition (values are cumulated 
means); (c) probability of production of at least one gyne (squares and 
error bars are means    ±    SE while the line represents the expected values 
generated by the most adequate model  –  see  Table   2  for details).   

     Table   2.     Results of model selection for gyne production (G) in nature as a function of the presence of a queen (Q), worker biomass (W), and brood 
biomass (B). The most adequate model is shown in bold.     

  Models AIC d.f. Deviance  P     

G   =   Q    +    sin(2. � .time)    +    cos(2. � .time) 80.8   
 G     =     Q      +      W      +      sin(2.  �  .time)      +      cos(2.  �  .time)  68.99  1  13.812  0.001   
G   =   Q.W    +    sin(2. � .time)    +    cos(2. � .time) 67.86 1 3.131 0.077  
G   =   Q.W    +    Q.B    +    sin(2. � .time)    +    cos(2. � .time) 69.26 2 2.602 0.272  
G   =   Q.W    +    Q.B    +    W.B    +    sin(2. � .time)    +    cos(2. � .time) 70.16 1 1.103 0.294  
G   =   Q.W.B    +    sin(2. � .time)    +    cos(2. � .time) 72.08 1 0.071 0.790  
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Bruder & Gupta, 1972; Passera, 1974 ). Until the second instar, 
 A. senilis  larvae can develop into either gynes or workers, de-
pending on the social environment. In the laboratory, gyne pro-
duction almost never happens in the presence of the queen 
( Boulay  et al. , 2007 ). However, her experimental removal was 
rapidly followed by the development of one or a few gynes, pro-
vided that young brood (eggs, LI, or LII) was present. Neither 
workers nor gynes were produced if no brood was present at the 
time of orphaning. This indicates that gynes produced in orphan 
conditions derive from young bipotent larvae that would other-
wise develop into workers. Workers have active ovaries and, in 
our experiments, they laid a few eggs. However, no egg hatched 
before 35   days, either because of a long incubation time or be-
cause workers eliminated the first worker-laid eggs. In both 
cases, the first worker-laid eggs hatched long after the first pu-
pae occurred (only 12   days in LII-groups), which rules out 
worker thelytoky as a mechanism of gyne production, as this 
occurs in  Cataglyphis cursor ,  Pristomyrmex pungens , and 
 Cerapachys biroi  ( Lenoir & Cagniant, 1986; Tsuji, 1988; Tsuji 
& Yamauchi, 1995 ). In the present experiment, worker-laid eggs 
more likely yielded males as male production was shown to in-
crease after about 3   months of orphaning ( Boulay  et al. , 2007 ). 

 A kin selection theory suggests that if diploid larvae were 
able to decide their own development, a large proportion of 
them would develop into gynes.  Ratnieks (2001)  estimated this 
proportion to be between 14% and 20%, which approaches gyne 
production in some  Melipona  bees in which larvae seem to have 
an important power on their development ( Kerr, 1950, 1969; 
Engels & Imperatriz-Fonseca, 1990; Wenseleers  et al. , 2003 ). 
In contrast, we estimated that in  A. senilis , approximately 0.07% 

of the larvae develop into gynes. This is in the same order of 
magnitude as in the honeybee, in which 0.01% of diploid lavae 
develop into gynes ( Seeley, 1985; Winston, 1987 ) and is one 
order of magnitude higher than in the army ant  Eciton burchelli , 
in which 0.001% of the diploid brood may become gynes 
( Schneirla, 1971; Franks & Hölldobler, 1987 ). Such a small per-
centage of diploid brood developing into gynes suggests their 
development is mostly controlled by the adult females. 

 The fact that only workers but no gyne were produced in 
queenless conditions if only LIII were provided, indicates that a 
critical period exists during which larvae can adopt the worker 
or gyne development pathways ( Wheeler, 1986 ). However, the 
proximate mechanisms by which the presence of a queen deter-
mines the switch from worker to gyne route are still elusive. 
Previous results have shown that a group of workers and larvae 
separated from their mother queenright colony through a single 
mesh readily starts producing gynes. In contrast, a double-mesh 
separation between the orphan and the queenright group does 
not fully inhibit gyne production ( Boulay  et al. , 2007 ). This 
suggests that a contact, queen-derived signal suppresses gyne 
production. However, theory predicts that queen pheromones 
are unlikely to act coercively on larval development ( Keller & 
Nonacs, 1993 ). Therefore, it is more probable that the queen 
signal affects the behaviour of workers who have more control 
on brood development. It was hypothesised that while  A. senilis  
workers perceive the presence of their queen, they only allow 
worker development. However, when the queen signal fades out 

     Table   3.     Results of model selection fi tting the number of days (D) until 
pupa production in laboratory conditions as a function of larval stage 
(S) and caste (C) of the produced pupa. The minimum adequate model, 
in bold, includes the interaction between C and S.     

  Models d.f. AIC  �  2  �  2  d.f.  P     

D   =   S    +    C 7 65.785   
 D     =     S      +      C      +      S.C  11  59.803  14.263  4  0.007   

      

     Fig.   2.     Effect of brood stage on the time until the production of workers 
(grey bars) and gynes (white bars) in a queenless environment. The ex-
periment lasted 42   days. Values are estimates (means    ±    SE) calculated 
from the most adequate model ( Table   3 ). *No gyne or worker was pro-
duced when no brood was initially provided. No gyne was produced 
when LIII were only provided.   

     Table   4.     Results of model selection fi tting the number of days (D) until 
pupa production in laboratory conditions as a function of rearing tem-
perature (T) and caste C of the produced pupa. The minimum adequate 
model, in bold, includes simple main effects only.     

  Models d.f. AIC  �  2  �  2  d.f.  P     

D   =   T 3 26.001   
 D     =     T      +      C  4  22.646  5.3546  1  0.0207   
D   =   T    +    C    +    T.C 5 22.451 2.1955 1 0.1384  

      

     Fig.   3.     Effect of temperature on the time until worker and gyne produc-
tion in a queenless environment. Although pupation occurs more rapidly 
at a warm temperature, there is no signifi cant interaction between tem-
perature and caste development. Values are estimates (means    ±    SE) 
calculated from the most adequate model ( Table   4 ).   
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they start producing queens ( Boulay  et al. , 2007 ). It was also 
hypothesised that in nature gyne production can occur when the 
queen dies, when a colony splits during a migration event or 
when a colony becomes sufficiently populated, so that the puta-
tive queen signal dilutes among the numerous workers, who 
then decide to rear one or a few gynes ( Boulay  et al. , 2007 ). The 
present field data lend credence to the later scenario. In effect, 
although gynes are somehow rare throughout the year, they are 
more frequent at the end of July, when they can be found in up 
to 30% of the nests. This is just after the peak of worker emer-
gence when colonies contain many young workers and still a 
relatively abundant brood. Relying on the concentration of a 
queen signal may be adaptive for the colony, because it allows 
the investment of energy in gyne production only when colony 
fission is sustainable or after the queen dies. 

 At our study site, air temperature varies in summer between 
10   °C at dusk and 45   °C in the afternoon (temperature data are 
available since 1978 at:  www.ebd.csic.es/ ). Automatic tempera-
ture measurement indicates that temperature within the nests 
ranges from 20   °C at 50   cm deep to 53   °C in the most superficial 
chambers (R. Boulay & F. Amor, unpubl. data). By moving the 
larvae within the nest, workers can determine their rearing tem-
perature. Our results indicate that relatively warm temperatures 
actually increase the rate of pupation. Nevertheless, they give 
little support to the hypothesis that workers use temperature gra-
dient to orient larval development into gyne or worker. In effect, 
increasing temperature equally affects the timing of gynes and 
worker production, which is apparently dissimilar to other spe-
cies like  Myrmica rubra  ( Brian, 1973 ) and  Solenospis invicta  
( Cassill & Tschinkel, 2000 ). 

 Differential feeding has long been proposed as a mechanism 
by which workers of social hymenopterans orientate larval 
development ( Buschinger, 1990; Moritz, 1994; Wheeler, 1994 ) 
( Pereboom, 2000; Pereboom  et al. , 2003 ). Our experimental de-
sign did not allow us to test this effect and equal food access was 
provided to all colonies. In  A. senilis , workers do not nourish 
larvae through trophallaxis and they therefore have little oppor-
tunity to transform larval food quality with salivary secretions 
(as in the honeybee, for example). Instead, workers generally 
transport larvae on the prey, allowing them to eat actively. On 
the other hand, workers that perceive the presence of the queen 
might control the time each larva spends feeding on the prey. By 
doing so, workers may have the power to force larval develop-
ment into workers and to limit the allocation of energy to the 
production of a very small number of gynes required in a spe-
cies that disperses by colony fission. Further studies are now 
needed to test this hypothesis. 

 Our data suggest that almost all  A. senilis  larvae are forced by 
adults to develop into workers rather than into gynes. This raises 
the question of why larvae do not intend to resist this coercion. 
Small gynes have been described together with  normal  large 
gynes in stingless bees ( Wenseleers  et al. , 2005; Ribeiro  et al. , 
2006 ) and in several ants of the genus  Leptothorax  ( Rüppell 
 et al. , 1998 ),  Ectatomma  ( Hora  et al. , 2005 ) and  Manica  ( Lenoir 
 et al. , in press ). The evolution of microgynes might be a mecha-
nism for diploid larvae to become worker-like queens in spite of 
the vigilance of the adults ( Wenseleers  et al. , 2005 ). In  A. senilis , 
all queens are monomorphic and no such microgyne has been 

described. It has been proposed that the lack of larval resistance 
to adult power in many species is due to the fact that smaller 
individuals would be less fertile than normal large queens 
( Wenseleers  et al. , 2004 ). In the case of a monogynous, monan-
drous species like  A. senilis , helping to rear numerous highly 
related sisters may then be more advantageous than having a 
small direct offspring. Moreover, in fission-performing species, 
the success of a queen is conditioned by the choice of workers 
that eventually decide when and which queen should leave the 
mother nest. In such a competitive context, workers may sys-
tematically prefer large highly fertile queens and ignore small 
individuals. Further comparative studies should help test these 
hypotheses. However, we still lack basic information from a 
large number of species to determine the relation between queen 
morphology and number, social organization and mode of 
dispersal.    
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