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Biodiversidade—Cbio, Avenida André Araújo, 2936—Caixa Postal 2223, CEP 69080-
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Uberlândia, Minas Gerais 38405-320, Brazil
38Department of Biology, Stanford University, Stanford, CA 94305-5020, USA

Many studies have focused on the impacts of climate

change on biological assemblages, yet little is known

about how climate interacts with other major anthropogenic

influences on biodiversity, such as habitat disturbance.

Using a unique global database of 1128 local ant assem-

blages, we examined whether climate mediates the effects

of habitat disturbance on assemblage structure at a global

scale. Species richness and evenness were associated posi-

tively with temperature, and negatively with disturbance.

However, the interaction among temperature, precipitation

and disturbance shaped species richness and evenness. The

effect was manifested through a failure of species richness to

increase substantially with temperature in transformed

habitats at low precipitation. At low precipitation levels,

evenness increased with temperature in undisturbed sites,

peaked at medium temperatures in disturbed sites and

remained low in transformed sites. In warmer climates

with lower rainfall, the effects of increasing disturbance

on species richness and evenness were akin to decreases

in temperature of up to 98C. Anthropogenic disturbance

and ongoing climate change may interact in complicated

ways to shape the structure of assemblages, with hot, arid

environments likely to be at greatest risk.
1. Introduction
Although considerable debate exists about the forces that struc-

ture ecological assemblages (e.g. [1,2]), there is little doubt that,

at global scales, climate and disturbance are key drivers. For

instance, numerous studies have demonstrated that species

richness at both regional (e.g. 10 � 10 km grids) and local

(i.e. the scale of local assemblages) scales tracks contemporary

climatic conditions [3–5], and many studies have documented

predominantly negative effects of anthropogenic disturbance
on diversity at local scales [6,7]. Although anthropogenic dis-

turbance and climate are key drivers of assemblage structure,

surprisingly few studies have addressed their interaction as a

driver of biological change. Here, we use data from a global

database of the abundances of ant species from 1128 local

assemblages to determine how assemblage structure changes

with climate and disturbance.

Global-scale studies of determinants of species richness are

most commonly based on geographical ranges of species,

rather than local assemblages, and thus may not consider

sets of species that co-occur and interact with one another

[5,8]. Local assemblages result from species being filtered

from regional species pools at large spatial grains [9,10], and

both climate and disturbance act as important filters [10,11],

influencing not only which species are present in assemblages

but also their relative abundances and ultimately species

evenness within the assemblage (how evenly individuals are

divided among species within an assemblage).

For numerous taxa, global-scale studies of species richness

indicate that richness is highest in warm and stable climates

[4,5,12], although the extent to which this is true at more local

scales (i.e. the scale of a local community) and for other metrics

of diversity is an open question [13]. Moreover, these patterns

might be mediated by landscape-level disturbances (e.g. fire)

or transformation (e.g. establishment of exotic plantations),

especially with increasing human pressures in the most biodi-

verse regions in the world [8]. An additional challenge in

considering the structure of local assemblages is that whereas

at regional scales diversity data are composed simply of pre-

sences and absences—zeros and ones (as a consequence of the

kind of data available, if nothing else)—at more local scales

the differences in the relative abundances of taxa become

more important in distinguishing between communities. As a

result, it becomes important to consider the drivers not only

of the number of species, but also their relative abundance.

Theory predicts that disturbance should lead to either

decreases in richness and evenness [14] through reductions in

energy, or increases in richness and evenness (at intermediate

levels of disturbance) due to a trade-off between competitive

dominance and colonization [6]. However, climate might be

expected to mediate the effect of disturbance by, for example,

altering the rates of colonization [10] or the prevalence of com-

petition [15]. Thus, understanding the interaction between

climate and disturbance is critical in predicting the outcome

for species assemblages under global change. Superficially,

the transformation of habitats, for example from native forest

to pine plantation, might be expected to respond similarly to

a disturbance as biomass is removed in the process (although

energy flows are not necessarily reduced). However, in low-

biomass systems, such as deserts, where the transformation of

habitat results in increased biomass, richness may also increase.

Here, we examine whether contemporary climate mediates

the effects of disturbance on ant assemblages around the

world. This work is unique in using data from a large set of

local assemblages and in examining assemblage evenness in

addition to species richness.
2. Material and methods
(a) Assemblage data
We compiled species abundance data from local ant assemblages

from 1128 sites distributed throughout the world (figure 1).

http://rspb.royalsocietypublishing.org/
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Figure 1. World map ( plate carrée projection) showing the 1128 independent study locations (circles) from which we obtained data on ant assemblages from pitfall
trapping. Note that many of the studies used evaluated multiple independent locations in relatively close proximity, so appear as a single point.
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The data used here were largely collected by the authors and

built upon a database originally created by Dunn et al. [5,16].

Additional studies were added after searches of the Web of

Science and Google Scholar for published datasets on ant assem-

blages that included site-specific details of species abundances.

Assemblages included in this analysis met the following criteria:

(1) the ground-foraging ant assemblage was sampled using stan-

dardized passive field methods, with all studies including pitfall

trapping and some studies also including Winkler or Berlese

funnel sampling (both of which involve sampling from leaf

litter); (2) sampling was not trophically or taxonomically limited

(e.g. the study was not focused on only seed-harvesting ants);

and (3) assemblages that included one of the top five invasive

ants (Anoplolepis gracilipes, Linepithema humile, Pheidole megace-
phala, Solenopsis invicta or Wasmannia auropunctata) outside their

native range were excluded (55 localities). Assemblages were

located in Oceania (54.7%), Europe (12.1%), North America

(17.2%), Africa (11.5%), South America (4.0%) and Asia (0.3%).

Ideally all regions would have been well represented, but studies

were scarce in some regions or did not fit our criteria for inclusion.

The main broad habitat types represented were forest (28%),

shrubland (22%), woodland (21%) and grassland (16%).

(b) Environmental variables: climate and disturbance
Contemporary environmental variables were obtained from the

WorldClim database [17] at a spatial resolution of 30-arcsecond

resolution (approx. 1 � 1 km) and were extracted using ARCGIS

(ESRI, Redlands, CA; 2010). The 1 km resolution was selected so

that the environmental data would describe the conditions with

high specificity for the site at which ants were sampled and the sur-

rounding environment. We used mean annual temperature (MAT;

range: 0.1–28.58C), annual precipitation (157–3303 mm), tempera-

ture range (9.7–52.28C), hemisphere, continent, trap days (range:

2–18 360) and transect length (range: 1–1000 m) in our analyses.

Sampling grain and extent can affect the outcome of analyses of

diversity metrics [18], so including details of trap days and total

transect length in all analyses accounted for differences in

sampling protocols among studies. When the same site was

sampled multiple times, we summed the data across sampling

dates to obtain a species abundance value (i.e. the number of

workers) for each species in that site. MAT and annual precipi-

tation peaked at the equator and were slightly higher in the

Southern Hemisphere than at equivalent latitudes in the Northern

Hemisphere (electronic supplementary material, figure S1a,b).

Temperature range was lowest at the equator and was slightly
greater in the Northern Hemisphere than in the Southern

Hemisphere (electronic supplementary material, figure S1c).

We categorized sites into three disturbance categories, based on

study site descriptions by the investigators: (1) undisturbed (i.e. no

evidence of recent anthropogenic or natural disturbance); (2) dis-

turbed, including moderate disturbances such as forestry (native

tree species), wind, fire (natural), fire (anthropogenic) and restora-

tion (following clearing or mining); and (3) transformed, including

severe disturbances such as agriculture, cropping, grazing, forestry

(introduced tree species), mining, urban and recreation.

(c) Data analysis
All statistical analyses were carried out in the R v. 3.0.3 statistical

environment [19]. We selected two commonly used metrics to

describe assemblage structure: species richness and a measure of

species evenness, the probability of interspecific encounter

(PIE) [20,21]. We calculated PIE from Simpson’s diversity index

(PIE ¼ 1 2 Simpson’s diversity index) using the vegan package

[22]. PIE gives the probability that two randomly sampled individ-

uals from an assemblage represent two different species. PIE is

equivalent to the slope of an individual-based rarefaction curve

measured at its base [23], and ranges from 1.0 when all species

are equally abundant in an assemblage to 0 when there is only a

single species in an assemblage. PIE is also robust to variation in

abundance among assemblages [24] and is a scale-independent

metric [18]. Additionally, PIE was strongly and inversely corre-

lated with a measure of dominance (number of individuals of

the most abundant species divided by the number of individuals

of all species) (t748 ¼ 287.0, p , 0.0001, r ¼ 20.95) and positively

correlated with a range of other diversity measures for our

dataset, including Shannon’s H and Pielou’s evenness. PIE and

species richness were correlated, but the relationship was weak

(r ¼ 0.13). We henceforth refer to PIE as ‘species evenness’.

We tested the effect of climate (MAT, mean annual precipi-

tation and temperature range) and disturbance (three levels:

disturbed, undisturbed and transformed) on species richness and

evenness of ant communities. Additionally, to control for sampling

differences, we included the number of trap days and transect

length in all models. Because sites were spatially clustered,

we used mixed-effects models, with clusters of sites separated

by no more than 100 km from each other represented by a single

random effect to control for potential autocorrelation between

localized sites (see electronic supplementary material, figure S2,

for map of clusters). We also included continent and hemisphere

as fixed effects in the models, in order to account for any regional

http://rspb.royalsocietypublishing.org/
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differences in ant assemblages. For species richness, we used the

lme4 package [25] to fit generalized linear mixed models, specify-

ing a Poisson error distribution. Fitted models for species richness

showed evidence of over-dispersion, so to control for this we

included an observation-level random effect [26,27]. To model

the effects of disturbance and climate on species evenness (PIE),

we built linear mixed-effects models in the lme4 package. Because

PIE represents a bounded variable (between 0 and 1), we used a

logit transformation [28]. The minimum non-zero value (3.35 �
1024) was added to the denominator and the numerator of the

logit transform equation to allow transformation of values equal

to zero and 1, which would otherwise transform to 21 and 1,

respectively. To test for nonlinear relationships in the response

variables (species richness and evenness), we used Akaike’s infor-

mation criterion (AIC) to compare models that included key

climatic variables (MAT and mean annual precipitation) as (1)

linear terms and (2) second-order polynomial terms. Polynomial

terms were fitted as orthogonal variables to avoid correlations

between the linear and quadratic components in the model [29].

To test for the significance of climate and disturbance effects, we

used type III tests based on Wald x2 statistics calculated using

the car package [30]. We also report both marginal (fixed effects;

R2
GLMM(m)) and conditional (fixed þ random effects; R2

GLMM(c)) R2

values [31]).

Our modelling approach compared nested models that

included: (1) climate (MAT; precipitation and temperature

range); (2) climateþ disturbance; (3) the climate� disturbance

interaction, where only MAT was included in the interaction; and

(4) the climate� disturbance interaction, where both MAT and

precipitation were included in the interaction (i.e. MAT �
precipitation � disturbance). All models included lower-level inter-

actions and the main effects MAT, precipitation and temperature

range. We used AIC to select the best model. For a subset of the

data where we had more detailed information on the type of dis-

turbance (n ¼ 755), we also tested models where fire-affected sites

were excluded, because the absence of fire might be considered a

disturbance in highly fire-prone biomes. Additionally, we exam-

ined models where low latitudes (2178 to 178) were excluded,

because transformed sites were not represented within that range.
3. Results
Both species richness and species evenness showed hump-

shaped relationships with latitude, reflecting patterns observed

for climatic variables (electronic supplementary material,

figure S3). Species richness of ground-dwelling ants ranged

from 1 to 172 per assemblage, while species evenness ranged

from 0 to 0.98 per assemblage (with 1 being maximally

‘even’). Both measures peaked at the equator (electronic

supplementary material, figure S3).

(a) Best-fit models for climate and disturbance
The best-fit models (lowest AIC) for both species richness

and species evenness were the most complex models, includ-

ing the three-way interaction between disturbance, MAT and

precipitation (table 1). Models including the three-way inter-

action also had the lowest AIC when sites affected by fire or

low-latitude sites were excluded (electronic supplementary

material, table S1). MAT and precipitation were linear terms

in the best-fit model for species richness and polynomial

terms in the best-fit model for species evenness. For species

richness, the top three models included a three-way inter-

action between MAT, precipitation and disturbance (with

various combinations of polynomial and linear terms). The

top eight models for species richness included the MAT �
disturbance interaction, and models without this term differed

from the best model by at least 99.5 AIC points. For species

evenness, four of the top eight models included the three-

way interaction, and seven of the eight models included the

MAT � disturbance term. AIC values for the top model for

species evenness were considerably lower than those for

other models. The three-way models were also the best-fit

models when fire-affected and low-latitude sites were excluded

(electronic supplementary material, table S1).

For species richness (table 2 and figure 2a–c; electronic

supplementary material, table S2), the best-fit model was a

good fit to the data (R2
GLMM(m) ¼ 0:45; R2

GLMM(c) ¼ 0:77). The

slope of the positive relationship between temperature and

species richness was contingent on both disturbance and pre-

cipitation. In both undisturbed and disturbed sites, species

richness increased strongly with temperature, with precipi-

tation having a stronger effect on species richness in

disturbed sites (figure 2a,b). In transformed sites, species rich-

ness increased with temperature at a slower rate than in other

disturbance categories. While species richness tended to be

higher in disturbed than undisturbed sites, the effects of habi-

tat transformation on species richness was equivalent to the

effects of substantial declines in MAT. As example of this

effect, at an annual precipitation of 1000 mm, species richness

in transformed habitats with MATs of 208C was equivalent to

species richness in undisturbed sites at 138C (figure 2a,c).

The best model for species evenness was also a strong fit

to the data (R2
GLMM(m) ¼ 0:37; R2

GLMM(c) ¼ 0:49). Species even-

ness generally increased with temperature and precipitation,

with the increase with temperature most pronounced for

undisturbed sites (table 2 and figure 2d– f; electronic sup-

plementary material, table S2). Under low precipitation,

species evenness was higher in undisturbed than disturbed

and transformed sites. At high temperatures and low precipi-

tation (less than 1000 mm), predicted species evenness

decreased at disturbed sites. At an annual precipitation of

1000 mm, transformed sites with MATs of 208C had species

evenness equivalent to that found at 158C in disturbed sites

and 118C in undisturbed sites (figure 2d– f ).
4. Discussion
Over the range of MATs represented in this study (0.1–28.58C),

species richness was positively associated with temperature, in

agreement with patterns previously documented for a range of

taxa, including plants and mammals (e.g. [32]) and ants [5,33].

Species evenness was also largely positively associated with

temperature, even though species richness and evenness

were not well correlated. In warmer regions, ant assemblages

were both more diverse (as has been well documented) and

more even (which has not been considered previously).

Climate clearly regulated the effects of disturbance on

both species richness and evenness, suggesting that there

may be implications for predicting how climate change will

affect local assemblages. Climate filters species into assem-

blages [15], so extreme climates act to exclude species from

assemblages; our results suggest that disturbance and habitat

transformation have the same filtering effect, with predicta-

bly greater effects from transformation in low-precipitation

environments. The negative effects of disturbance seen in

transformed sites may occur because disturbance both

reduces biomass and simplifies habitats [34], resulting in an

http://rspb.royalsocietypublishing.org/


Table 1. Change in Akaike’s information criterion (DAIC) and model rank for all models predicting the effect of climate (MAT and total annual precipitation)
and disturbance on species richness and evenness (n ¼ 1123). All models included lower-level interactions, temperature range, transect length, pitfall days,
hemisphere and continent. Both linear and second-order polynomial terms ( poly) were included for precipitation and temperature range.

model d.f.

species richness species evenness

DAIC rank DAIC rank

temp. � prec. � disturbance 22 0.0 1 234.6 6

temp. ( poly) � prec. � disturbance 28 3.0 2 137.5 3

temp. � prec. ( poly) � disturbance 28 3.2 3 174.5 4

prec. ( poly) � temp. ( poly) � disturbance 37 6.3 4 0.0 1

temp. ( poly) � prec. ( poly) þ temp. ( poly) � disturbance 25 6.8 5 133.4 2

temp. � prec. ( poly) þ temp. � disturbance 20 10.4 6 254.5 7

temp. ( poly) � prec. þ temp. ( poly) � disturbance 22 10.5 7 176.3 5

temp. � prec. þ temp. � disturbance 18 13.4 8 273.1 9

temp. � prec. ( poly) þ disturbance 18 99.5 9 312.8 12

temp. � prec. þ disturbance 16 102.6 10 331.0 18

temp. ( poly) � prec. ( poly) þ disturbance 21 103.1 11 261.8 8

temp. ( poly) � prec. þ disturbance 18 106.4 12 303.3 11

temp. þ prec. 13 168.4 13 344.3 22

temp. þ prec. ( poly) 14 168.7 14 336.7 19

temp. � prec. 14 169.8 15 346.0 23

temp. ( poly) þ prec. 14 170.3 16 327.8 16

temp. � prec. ( poly) 16 170.4 17 327.2 15

temp. ( poly) þ prec. ( poly) 15 170.6 18 320.1 14

temp. ( poly) � prec. ( poly) 19 172.7 19 276.6 10

temp. ( poly) � prec. 16 172.9 20 319.0 13

temp. 4 194.4 21 342.2 20

temp. ( poly) 5 195.4 22 329.8 17

prec. 4 242.1 23 349.4 24

prec. ( poly) 5 243.8 24 342.3 21
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outcome similar to the effects of aridity on assemblages. How-

ever, in warm climates, species richness tended to be higher

in disturbed than in undisturbed habitats. This might be a

result of increased habitat heterogeneity or the dynamic of

colonisers and competitively dominant species predicted by

the intermediate disturbance hypothesis [6].

Critically, our study reveals that precipitation plays a key

role in mediating the relationships among richness, evenness,

disturbance and temperature. At higher precipitation, our

models showed that, although evenness is lower in disturbed

and transformed sites, and richness is lower in transformed

sites, both richness and evenness exhibit a relationship with

temperature similar to that observed in undisturbed sites (i.e.

increase with increasing temperature). This is likely to be due

to increasing habitat complexity and resource availability

[34,35]. There is, however, a strikingly different scenario in

arid habitats: here, evenness in disturbed and transformed

sites remains low, regardless of temperature. In other words,

under low precipitation, undisturbed habitats support the high-

est species evenness, particularly at higher temperatures,

suggesting that the costs of disturbance are greater in warmer,

low-productivity sites. A similar effect occurs for species
richness in transformed sites. The effects of disturbance in

hot, arid environments such as shrublands, deserts and savan-

nahs might be particularly acute if recovery after disturbance is

slower (e.g. [36]). However, previous studies suggest that ant

assemblages in arid environments recover rapidly following

disturbance because changes in habitat structure are small

[37]. Collectively, these findings highlight that the biota in

low-productivity environments can be highly sensitive to dis-

turbance. Given the dominance of pastoralism in these

regions, it is likely that these disturbances may have a more

immediate and longer-lasting local legacy than climate change.
5. Conclusion
Our results suggest that, at global scales, with increasing temp-

erature, assemblages become more species rich, with a greater

evenness (and reduced dominance by single species). How-

ever, extrapolating from these findings to predict responses

to climate change may be over-ambitious. The manner in

which assemblage structure changes in response to tempera-

ture depends on the local species pool and the ability of

http://rspb.royalsocietypublishing.org/


Table 2. Test statistic and significance for best-fit models testing the effect of climate and disturbance on diversity indices.

response d.f.

species richness evenness

x2 x2

MAT 2 72.0*** 28.5***

precipitation 2 5.8* 18.6***

disturbance 2 79.2*** 29.0***

temperature range 1 22.1*** 12.1***

hemisphere 1 2.2 0.0

continent 4 8.9† 2.5

transect length 1 0.9 1.3

pitfall days 1 2.5 3.1†

MAT � precipitation 4 0.4 3.6

MAT � disturbance 4 58.5*** 101.2***

precipitation � disturbance 4 17.2*** 11.7*

MAT � precipitation � disturbance 8 4.8 20.7**
†p , 0.10; *p , 0.05; **p , 0.01; ***p , 0.001.
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colonizing species to disperse rapidly enough to track tempera-

ture change [38]. At the predicted extreme climates, it is unclear

whether species with suitable tolerances exist in the regional

species pool. It is therefore possible that temperature increases

will lead to increasing dominance and reduced diversity close

to the equator (the ‘edge’ of the species pool, where species

experience the highest temperatures) [39] and in assemblages

to which dispersal is limited. Moreover, while our data also

indicate the critical role precipitation plays in shaping
assemblage structure, predictions for changes in rainfall

regimes and understanding of how biota might respond are

even more uncertain than those for temperature [40].

Climate change is predicted to increase the frequency of

extreme weather events, such as drought, heatwaves and

heavy rainfall, which can either act directly as disturbances

to ecosystems or increase the severity of other disturbances

(e.g. fire) [41]. A common effect of habitat disturbances is

simplification of habitat structure [34,42], and habitat

http://rspb.royalsocietypublishing.org/


rspb.royalsocietypublishing.org
Proc.

7

 on July 7, 2015http://rspb.royalsocietypublishing.org/Downloaded from 
complexity is positively associated with species richness and

evenness [43]. The predicted increase in extreme events due

to climate change therefore has the potential to be a signifi-

cant driver of change in assemblage structure. Our data

suggest that the effects of disturbance on assemblage struc-

ture could be equivalent to the effects of changes in

MAT of up to 98C (figure 2), which is much greater than

temperature increase predictions for the next 100 years of

up to 4.88C in the most extreme scenarios [44]. However,

while our data suggest that climate change would result in

more species-rich and even assemblages (assuming species

are available to colonize sites), we argue that severe disturb-

ance is likely to pose a more immediate and pressing threat to
ecosystems by decreasing diversity and promoting domi-

nance by disturbance specialists.
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